Cnr, olografia digitale e intelligenza artificiale per rilevare le microplastiche in mare

77

Un sensore olografico e un metodo innovativo di intelligenza artificiale consentono di rilevare automaticamente la presenza di microplastiche in campioni marini, distinguendole dal microplankton: questo l’importante risultato di una ricerca pubblicata su Advanced Intelligent Systems (Wiley). Il lavoro ha coinvolto due gruppi dell’Istituto di Scienze applicate e sistemi intelligenti del Consiglio nazionale delle ricerche (Cnr-Isasi): il gruppo di Olografia digitale di Pozzuoli, coordinato da Pietro Ferraro, in collaborazione con il gruppo di Intelligenza artificiale di Lecce. Tale attivita’ di ricerca e’ svolta nell’ambito del progetto interdisciplinare Pon “Sistemi di rilevamento dell’inquinamento marino da plastiche e successivo recupero-riciclo (Sirimap)”, uno dei cui obiettivi e’ proprio lo sviluppo di tecniche automatiche di monitoraggio delle plastiche in ambiente marino. “L’inquinamento dei mari dovuto alla plastica e’ una delle maggiori emergenze ambientali che ci troviamo ad affrontare. Quando questi inquinanti scendono fino a dimensioni microscopiche, il problema e’ ancora piu’ allarmante: le microplastiche possono infatti essere ingeriti della fauna marina destinata al consumo, entrando nella catena alimentare e causando effetti negativi sulla salute anche umana. Dimensioni ridotte degli inquinanti e vasta eterogeneita’ dei campioni marini, finora, hanno impedito di effettuare uno screening automatico ed accurato mirato a conoscere l’abbondanza delle microplastiche”, spiegano Vittorio Bianco e Pasquale Memmolo del Cnr-Isasi. “Il metodo da noi proposto utilizza le informazioni fornite da un microscopio olografico a contrasto di fase, per estrarre da ciascun elemento analizzato un’ampia e inedita gamma di parametri altamente distintivi per questa classe di inquinanti. Tali parametri hanno consentito di addestrare un’architettura di intelligenza artificiale a distinguere le microplastiche da microalghe di dimensione e forma in apparenza similari.